Moment estimates for chaoses generated by symmetric random variables with logarithmically convex tails

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moment and tail estimates for multidimensional chaoses generated by positive random variables with logarithmically concave tails

In this paper we give estimates of tails and moments of multidimensional chaoses P ai1,...,idX (1) i1 · · ·X id (ai1,...,id ≥ 0) generated by positive random variables X (1) i1 , . . . , X (d) id with logarithmically concave tails. The estimates are exact up to constants depending only on the dimension d.

متن کامل

Moment inequalities for sums of certain independent symmetric random variables

This paper gives upper and lower bounds for moments of sums of independent random variables (Xk) which satisfy the condition that P (|X|k ≥ t) = exp(−Nk(t)), where Nk are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which N(t) = |t| for some fixed 0 < r ≤ 1. This complements work of Glus...

متن کامل

Moment Estimator for Random Vectors with Heavy Tails

If a set of independent, identically distributed random vectors has heavy tails, so that the covariance matrix does not exist, there is no reason to expect that the sample covariance matrix conveys useful information. On the contrary, this paper shows that the eigenvalues and eigenvectors of the sample covariance matrix contain detailed information about the probability tails of the data. The e...

متن کامل

Concentration for independent random variables with heavy tails

If a random variable is not exponentially integrable, it is known that no concentration inequality holds for an infinite sequence of independent copies. Under mild conditions, we establish concentration inequalities for finite sequences of n independent copies, with good dependence in n.

متن کامل

Lower bounds for tails of sums of independent symmetric random variables

The approach of Kleitman (1970) and Kanter (1976) to multivariate concentration function inequalities is generalized in order to obtain for deviation probabilities of sums of independent symmetric random variables a lower bound depending only on deviation probabilities of the terms of the sum. This bound is optimal up to discretization effects, improves on a result of Nagaev (2001), and complem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2015

ISSN: 0167-7152

DOI: 10.1016/j.spl.2015.08.019